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Abstract: Absolute rate constants are reported for the

addition of the methyl radical to 20 monosubstituted and

1,1-disubstituted alkenes at room temperature in liquid solution. They increase with increasing exothermicity of the
addition and are enhanced by strong nucleophilic polar effects for electron-deficient alkenes. This agrees with
conclusions derived from earlier relative rate data but disagrees with a general insignificance of polar effects predicted

by ab initio calculations.

The rate constants for the addition of carbon-centered radicalsstates for methyl additions did not reveal substantial charge

to alkenes CH=CXY vary strongly with radical and alkene
substitutiont This is generally ascribed to a dependence of the
activation barrier on the reaction enthalpy and to stabilizing polar
interactions in the transition state. Particularly large polar effects
are known for the nucleophilitert-butyl anda-hydroxyalkyl
radical2 and for the electrophilic perfluoroalld/land dicya-
nomethyt species. The addition rates of other radicals follow
the enthalpy variation and exhibit only weak nucleophilic
((CH2)2CCN, benzyl, and cumyl) or electrophific(CH,-
CO,C(CHs)s, CH,CN) effects.

For the parent methyl radical controversial views have been
expressed. Szwarc’s rate constants for additimeasured
relative to the hydrogen abstraction from isooctane at®5
indicate nucleophilic polar effects since methyl reacts faster with
electron-deficient alkenes than with styrenes. In the methylation
of protonated heteroaromatic bases Minisci étako found a
nucleophilic addition behavior. However, in both cases the polar
effects are much weaker than for more easily oxidizable radicals,
e.g.tert-butyl. To the contraryab initio studies of transition
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transfer® Instead, Fueno et &.found a linear barrierenthalpy
correlation for six alkenes (GHCHX, X = OCHs, CHs, H,
CO;H, CN, C=CH, UHF 3-21G). Using the advanced QCISD-
(T)/6-311G**//UHF/6-31G*-ZPVE level the same was found
by Radom et al! for ten alkenes (CkH=CHX, X = H, CHg,
NHz, OH, F, Sik, Cl, CN, CHO, NQ, E;= 72.6+ 0.41H,, in
kJmol™t, R? = 0.973). These authors conclud&dthat polar
contributions to the reactivity of methyl toward alkenes are
generally insignificant and that the reaction enthalpy is the
dominant factor.

To provide a larger basis for discussion we have now
determined absolute rate constants for the addition of the methyl
radical to 20 monosubstituted and 1,1-disubstituted alkenes in
liquid solution at 24°C. As in earlier work>® kinetic ESR
spectroscopy with intermittent photochemical radical generation

was applied. The radicals were produced by photolysis (260

nm < 1 < 340 nm) of oxygen-free solutions of dicumyl peroxide
(Aldrich, repeatedly recrystallized from methanol, 0.022 M) in
a flow system. The primary cleavage (eq 1) is followed by a
fast k; > 10° s™1) fragmentatio?? which renders the formation
of methyl instantaneous on our experimental time scalex€0
to 20 ms).

hv .
CeHs(CH;),COOC(CH),CeHs — 2CH5(CHy),CO (1)
CgH5(CH,),CO— C;H,COCH, + CH, 2

Since the product acetophenone may sensttihe cleavage
in eq 1 it was added deliberately (0.033 M). For the solvent
chosen, 1,1,2-trichloro-1,2,2-trifluoroethane (Johnson Matthey
Alfa Products,>99.8%), methyl was the only radical detectable
during continuous photolysis. In the absence of alkenes it
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Table 1. Absolute and Relative Rate Constants (M) for A logk
Methyl Addition to Alkenes CH=CXY, Alkene Electron Affinities 65
(EA/eV) and lonization Energies (IP/eV), Estimated Reaction -
Enthalpies ), and Activation Energies (kJ nd)
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Figure 2. Correlation of logk (24 °C) for the addition of the methyl

decayed by second-order kinetics; (~ 220 us) slightly radical to alkenes (CH-CXY) with the alkene electron affinity EA.

perturbed by a first- or pseudo-first-ordetd = (10 & 2) ms)
which we attribute to reactions with solvent and/or the starting 5 300 30 000. and 39 000 M s for the addition to ethene

compounds. From tr_\e steady-state radical concentration_andpropene, 1-butene, and 2-methylpropene, respectively, in water
the second-order lifetime the rate constant for the self-termina- 5 o5o¢ * The first two values agree fairly well with our results

tion of methyl was obtained as@= (1.6 + 0.2) x 10°M™ but the latter two appear high. The preferred Arrhenius

o1 . w1
s 1, and is as expected for a d|ffu3|on_-controlled process. In parameters for the gas-phase addiffdead to a lowksgo =
the presence olf alkene:s the pseudo-first-order contribution 444 \-1 571 for ethene (statistically corrected), but somewhat
increased as; ~ = 710 - + KA], i.e. methyl reacts with the  pighar vajues are also availabfe. Finally, with the only

alkenes. ltis !(nowﬁ‘ that this involves the selective addition exception of 2-cyanopropene, our data correlate extremely well
to the unsubstituted carbon atom of E+CXY, and the nature | it Sowarc’s relative rate constahtat 65 °C. Hence, all

of the adduct radicals GJEH,CXY was reensured he_rg fora earier findings support the present rate constants and their
few cases only. The rate constants for the addition were g qering with the alkene substituents to a fair extent.
obtained from the slopes of the linear relathns betweeh To analyze for enthalpic and polar substituent effects it is
gnq .N' and_ for_each alkene 4 to 6 concentrations and 20 to 40 common to seek correlations of légwith eitherH; or EA and
individual kinetic runs were employed. The average values IP2-611 Here, we do not find a significant dependence on IP

. X 0 . , .
given have estimated errors lower thﬁﬂo,/o' , . Hence, methyl does not express electrophilic polar effects as it

Table 1 shows the results together with Szwarc's relative yoes not react particularly fast with low IP alkenes. On the
data’ the alkene electron affinities (EA) and ionization energies other hand, the correlations with (Figure 1) and EA (Figure
(IP), and the reaction enthalpids,) for the addition. The latter 2) are significant. Sincel, and EA themselves correl4fe!!

are derived from experimental bond dissociation energies andsor many alkenes it is difficult to assess the dominating factor.
molecular heats of formation as described in detail edflard However, a comparison with other radicals clearly shows that

are believed to be correct to about 5 kJ mol In the last 1 rate constants for the addition of methyl to alkenes (a)
column activation energies are listed which were estimated from grossly increase with increasing reaction exothermicity and are

ﬂf rate constants with a common frequency factorAdg(™* (b) strongly enhanced by nucleophilic effects for electron-
s)=8.5. Thisis the average of four average frequency factors yeficient alkenes. The strong influence Idf is revealed by
established for the addition of other primary alkyl radicals 10 {he close similarity of the linear correlation given in Figure 1

the same alkend®>®and is close to the preferred gas-phase it that found for the much less reactive 2-cyano-2-propyl
value'® of log(A/M~1 s71) = 8.3. For comparison Table 1 also

contains Radom’sb initio enthalpies and barriet$2. (15) (a) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Enser, C.; Frank, P.;
g " Just, T.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz].J.
So far, only a few |nd|.rect measurements of methyl addition Phys Chem, Ref Data 1992 21, 411. (b) Holt, P. M.: Kerr, J. Alnt. J.
rate constants are available. Thodfa®ported k= 2 450, Chem Kinet 1977, 9, 185.
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radicaP? (log k = 0.000 — 0.03H,, R? = 0.850) which does barrier for methyl additions to alkenes. However, the depen-
not exhibit polar effects. Furthermore, the slope is very similar dence is weaker than calculatéd They clearly disagree with

to those obtained for benzyt-Q.045), cyanomethyl-0.039) a general insignificancef polar contribution¥'2Pbut support
andtert-butoxycarbonylmethyl£0.037), i.e. radicals for which ~ the earlier notatior’$ of a nucleophilic addition behavior to
the reaction enthalpy is also the dominant faéfér.We note electron-deficient alkenes which is weaker than that expressed
here that the linear correlation between logndH, for methyl by other alkyl radicals. A direct comparison of theoretical and
corresponds to a linear relation of the activation endtgsnd experimental reaction enthalpies and barriers (Table 1) has to
H: with a slope of 0.23. The strong nucleophilic rate enhance- allow for the accuracy of the data of both sets of an estimated
ments (b) are evidenced in Figure 1 by the marked positive 5—10 kJ mofL. Also, the theoretical values refes © K and
deviations of logk for the chloroalkenes, the acrylates, the gas phase and the experimental values t6@4nd solutions
acrylonitriles, and acrolein from the average correlation and are with solvent effects of unknown magnitude. Hence, the overall
supported by the correlation of Figure 2. In comparison to the agreement between theory and experiment is acceptable.
other radicals with dominating enthalpy effects the enhance- Nevertheless, there are differences in the trends which suggest
ments amount to factors of-20. As already noticed by that even the most advanced initio methods may underes-
Szward they cause a similar fast or faster addition to the timate the radical stabilization by methyl, alkoxy, and cyano
electron-deficient alkenes than to the styrenes. In comparisongroup$® and the polar effects of substituents on addition barriers.
to tert-butyl,?& ¢ 2-hydroxy-2-propyf? and hydroxymethyF the Studies on the temperature dependence of methyl addition
methyl radical is clearly less nucleophilic, however. In keeping rates are in progress.

with their ionization energié8 of 6.4—7.6 eV which are much
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